Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus.

نویسندگان

  • Anja Wallner
  • Michael Blatzer
  • Markus Schrettl
  • Bettina Sarg
  • Herbert Lindner
  • Hubertus Haas
چکیده

Iron is an essential metal for virtually all organisms. Iron acquisition is well characterized for various organisms, whereas intracellular iron distribution is poorly understood. In contrast to bacteria, plants, and animals, most fungi lack ferritin-mediated iron storage but possess an intracellular siderophore shown to be involved in iron storage. Here we demonstrate that deficiency in the intracellular siderophore ferricrocin causes iron starvation in conidia of Aspergillus fumigatus, demonstrating that ferricrocin is also involved in intra- and transcellular iron distribution. Thus, ferricrocin represents the first intracellular iron transporter identified in any organism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Roles for Intra- and Extracellular Siderophores during Aspergillus fumigatus Infection

Siderophore biosynthesis by the highly lethal mould Aspergillus fumigatus is essential for virulence, but non-existent in humans, presenting a rare opportunity to strategize therapeutically against this pathogen. We have previously demonstrated that A. fumigatus excretes fusarinine C and triacetylfusarinine C to capture extracellular iron, and uses ferricrocin for hyphal iron storage. Here, we ...

متن کامل

SreA-mediated iron regulation in Aspergillus fumigatus

Aspergillus fumigatus, the most common airborne fungal pathogen of humans, employs two high-affinity iron uptake systems: iron uptake mediated by the extracellular siderophore triacetylfusarinine C and reductive iron assimilation. Furthermore, A. fumigatus utilizes two intracellular siderophores, ferricrocin and hydroxyferricrocin, to store iron. Siderophore biosynthesis, which is essential for...

متن کامل

The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence.

Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in h...

متن کامل

Functional Investigation of Iron-Responsive Microsomal Proteins, including MirC, in Aspergillus fumigatus

The functionality of many microsome-associated proteins which exhibit altered abundance in response to iron limitation in Aspergillus fumigatus is unknown. Here, we generate and characterize eight gene deletion strains, and of most significance reveal that MirC (AFUA_2G05730) contributes to the maintenance of intracellular siderophore [ferricrocin (FC)] levels, augments conidiation, confers pro...

متن کامل

Survival of Aspergillus fumigatus in serum involves removal of iron from transferrin: the role of siderophores.

Aspergillus fumigatus is a filamentous fungus which can cause invasive disease in immunocompromised individuals. A. fumigatus can grow in medium containing up to 80% human serum, despite very low concentrations of free iron. The purpose of this study was to determine the mechanism by which A. fumigatus obtains iron from the serum iron-binding protein transferrin. In iron-depleted minimal essent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 12  شماره 

صفحات  -

تاریخ انتشار 2009